Title: Broccoli curves and the tropical invariance of Welschinger numbers
Abstract:In this paper we introduce broccoli curves, certain plane tropical curves of genus zero related to real algebraic curves. The numbers of these broccoli curves through given points are independent of t...In this paper we introduce broccoli curves, certain plane tropical curves of genus zero related to real algebraic curves. The numbers of these broccoli curves through given points are independent of the chosen points - for arbitrary choices of the directions of the ends of the curves, possibly with higher weights, and also if some of the ends are fixed. In the toric Del Pezzo case we show that these broccoli invariants are equal to the Welschinger invariants (with real and complex conjugate point conditions), thus providing a proof of the independence of Welschinger invariants of the point conditions within tropical geometry. The general case gives rise to a tropical Caporaso-Harris formula for broccoli curves which suffices to compute all Welschinger invariants of the plane.Read More
Publication Year: 2011
Publication Date: 2011-04-15
Language: en
Type: preprint
Access and Citation
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot