Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W1970748944', 'doi': 'https://doi.org/10.1109/tpami.2008.174', 'title': 'Nonparametric Discriminant Analysis for Face Recognition', 'display_name': 'Nonparametric Discriminant Analysis for Face Recognition', 'publication_year': 2009, 'publication_date': '2009-02-13', 'ids': {'openalex': 'https://openalex.org/W1970748944', 'doi': 'https://doi.org/10.1109/tpami.2008.174', 'mag': '1970748944', 'pmid': 'https://pubmed.ncbi.nlm.nih.gov/19229090'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tpami.2008.174', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S199944782', 'display_name': 'IEEE Transactions on Pattern Analysis and Machine Intelligence', 'issn_l': '0162-8828', 'issn': ['0162-8828', '1939-3539', '2160-9292'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref', 'pubmed'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': 'https://dspace.mit.edu/bitstream/1721.1/52396/2/Li-2009-Nonparametric%20Discri.pdf', 'any_repository_has_fulltext': True}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5100634431', 'display_name': 'Zhifeng Li', 'orcid': 'https://orcid.org/0000-0002-9653-7907'}, 'institutions': [{'id': 'https://openalex.org/I177725633', 'display_name': 'Chinese University of Hong Kong', 'ror': 'https://ror.org/00t33hh48', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I177725633']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'None Zhifeng Li', 'raw_affiliation_strings': ['Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong#TAB#'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong#TAB#', 'institution_ids': ['https://openalex.org/I177725633']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5010087030', 'display_name': 'Dahua Lin', 'orcid': 'https://orcid.org/0000-0002-8865-7896'}, 'institutions': [{'id': 'https://openalex.org/I63966007', 'display_name': 'Massachusetts Institute of Technology', 'ror': 'https://ror.org/042nb2s44', 'country_code': 'US', 'type': 'education', 'lineage': ['https://openalex.org/I63966007']}], 'countries': ['US'], 'is_corresponding': False, 'raw_author_name': 'None Dahua Lin', 'raw_affiliation_strings': ['[Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA]'], 'affiliations': [{'raw_affiliation_string': '[Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA]', 'institution_ids': ['https://openalex.org/I63966007']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5089058945', 'display_name': 'Xiaoou Tang', 'orcid': 'https://orcid.org/0000-0002-2402-3659'}, 'institutions': [{'id': 'https://openalex.org/I177725633', 'display_name': 'Chinese University of Hong Kong', 'ror': 'https://ror.org/00t33hh48', 'country_code': 'CN', 'type': 'education', 'lineage': ['https://openalex.org/I177725633']}], 'countries': ['CN'], 'is_corresponding': False, 'raw_author_name': 'None Xiaoou Tang', 'raw_affiliation_strings': ['Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong#TAB#'], 'affiliations': [{'raw_affiliation_string': 'Dept. of Syst. Eng. & Eng. Manage., Chinese Univ. of Hong Kong, Hong Kong#TAB#', 'institution_ids': ['https://openalex.org/I177725633']}]}], 'institution_assertions': [], 'countries_distinct_count': 2, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': 17.928, 'has_fulltext': True, 'fulltext_origin': 'pdf', 'cited_by_count': 191, 'citation_normalized_percentile': {'value': 0.999921, 'is_in_top_1_percent': True, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 98, 'max': 99}, 'biblio': {'volume': '31', 'issue': '4', 'first_page': '755', 'last_page': '761'}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10057', 'display_name': 'Face and Expression Recognition', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10057', 'display_name': 'Face and Expression Recognition', 'score': 0.9997, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10828', 'display_name': 'Biometric Identification and Security', 'score': 0.9934, 'subfield': {'id': 'https://openalex.org/subfields/1711', 'display_name': 'Signal Processing'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T11448', 'display_name': 'Face recognition and analysis', 'score': 0.9749, 'subfield': {'id': 'https://openalex.org/subfields/1707', 'display_name': 'Computer Vision and Pattern Recognition'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/scatter-matrix', 'display_name': 'Scatter matrix', 'score': 0.6581588}], 'concepts': [{'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.7976726}, {'id': 'https://openalex.org/C176917957', 'wikidata': 'https://www.wikidata.org/wiki/Q7430596', 'display_name': 'Scatter matrix', 'level': 4, 'score': 0.6581588}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.6522929}, {'id': 'https://openalex.org/C32834561', 'wikidata': 'https://www.wikidata.org/wiki/Q660730', 'display_name': 'Subspace topology', 'level': 2, 'score': 0.6507207}, {'id': 'https://openalex.org/C153180895', 'wikidata': 'https://www.wikidata.org/wiki/Q7148389', 'display_name': 'Pattern recognition (psychology)', 'level': 2, 'score': 0.6301725}, {'id': 'https://openalex.org/C69738355', 'wikidata': 'https://www.wikidata.org/wiki/Q1228929', 'display_name': 'Linear discriminant analysis', 'level': 2, 'score': 0.5757518}, {'id': 'https://openalex.org/C95623464', 'wikidata': 'https://www.wikidata.org/wiki/Q1096149', 'display_name': 'Classifier (UML)', 'level': 2, 'score': 0.5628097}, {'id': 'https://openalex.org/C102366305', 'wikidata': 'https://www.wikidata.org/wiki/Q1097688', 'display_name': 'Nonparametric statistics', 'level': 2, 'score': 0.45997477}, {'id': 'https://openalex.org/C31510193', 'wikidata': 'https://www.wikidata.org/wiki/Q1192553', 'display_name': 'Facial recognition system', 'level': 3, 'score': 0.44444537}, {'id': 'https://openalex.org/C117251300', 'wikidata': 'https://www.wikidata.org/wiki/Q1849855', 'display_name': 'Parametric statistics', 'level': 2, 'score': 0.4290607}, {'id': 'https://openalex.org/C163716315', 'wikidata': 'https://www.wikidata.org/wiki/Q901177', 'display_name': 'Gaussian', 'level': 2, 'score': 0.42471814}, {'id': 'https://openalex.org/C119857082', 'wikidata': 'https://www.wikidata.org/wiki/Q2539', 'display_name': 'Machine learning', 'level': 1, 'score': 0.33940884}, {'id': 'https://openalex.org/C177384507', 'wikidata': 'https://www.wikidata.org/wiki/Q1149000', 'display_name': 'Multivariate normal distribution', 'level': 3, 'score': 0.17259762}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.1646038}, {'id': 'https://openalex.org/C105795698', 'wikidata': 'https://www.wikidata.org/wiki/Q12483', 'display_name': 'Statistics', 'level': 1, 'score': 0.08627537}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C161584116', 'wikidata': 'https://www.wikidata.org/wiki/Q1952580', 'display_name': 'Multivariate statistics', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}], 'mesh': [{'descriptor_ui': 'D005145', 'descriptor_name': 'Face', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': True}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': 'Q000706', 'qualifier_name': 'statistics & numerical data', 'is_major_topic': True}, {'descriptor_ui': 'D016002', 'descriptor_name': 'Discriminant Analysis', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D006801', 'descriptor_name': 'Humans', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D010363', 'descriptor_name': 'Pattern Recognition, Automated', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}, {'descriptor_ui': 'D018709', 'descriptor_name': 'Statistics, Nonparametric', 'qualifier_ui': '', 'qualifier_name': None, 'is_major_topic': False}], 'locations_count': 3, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1109/tpami.2008.174', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S199944782', 'display_name': 'IEEE Transactions on Pattern Analysis and Machine Intelligence', 'issn_l': '0162-8828', 'issn': ['0162-8828', '1939-3539', '2160-9292'], 'is_oa': False, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320439', 'host_organization_name': 'IEEE Computer Society', 'host_organization_lineage': ['https://openalex.org/P4310320439', 'https://openalex.org/P4310319808'], 'host_organization_lineage_names': ['IEEE Computer Society', 'Institute of Electrical and Electronics Engineers'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, {'is_oa': True, 'landing_page_url': 'http://hdl.handle.net/1721.1/52396', 'pdf_url': 'https://dspace.mit.edu/bitstream/1721.1/52396/2/Li-2009-Nonparametric%20Discri.pdf', 'source': {'id': 'https://openalex.org/S4306400425', 'display_name': 'DSpace@MIT (Massachusetts Institute of Technology)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I63966007', 'host_organization_name': 'Massachusetts Institute of Technology', 'host_organization_lineage': ['https://openalex.org/I63966007'], 'host_organization_lineage_names': ['Massachusetts Institute of Technology'], 'type': 'repository'}, 'license': 'cc-by-nc', 'license_id': 'https://openalex.org/licenses/cc-by-nc', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, {'is_oa': False, 'landing_page_url': 'https://pubmed.ncbi.nlm.nih.gov/19229090', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306525036', 'display_name': 'PubMed', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I1299303238', 'host_organization_name': 'National Institutes of Health', 'host_organization_lineage': ['https://openalex.org/I1299303238'], 'host_organization_lineage_names': ['National Institutes of Health'], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': {'is_oa': True, 'landing_page_url': 'http://hdl.handle.net/1721.1/52396', 'pdf_url': 'https://dspace.mit.edu/bitstream/1721.1/52396/2/Li-2009-Nonparametric%20Discri.pdf', 'source': {'id': 'https://openalex.org/S4306400425', 'display_name': 'DSpace@MIT (Massachusetts Institute of Technology)', 'issn_l': None, 'issn': None, 'is_oa': True, 'is_in_doaj': False, 'is_core': False, 'host_organization': 'https://openalex.org/I63966007', 'host_organization_name': 'Massachusetts Institute of Technology', 'host_organization_lineage': ['https://openalex.org/I63966007'], 'host_organization_lineage_names': ['Massachusetts Institute of Technology'], 'type': 'repository'}, 'license': 'cc-by-nc', 'license_id': 'https://openalex.org/licenses/cc-by-nc', 'version': 'publishedVersion', 'is_accepted': True, 'is_published': True}, 'sustainable_development_goals': [{'id': 'https://metadata.un.org/sdg/10', 'score': 0.72, 'display_name': 'Reduced inequalities'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 33, 'referenced_works': ['https://openalex.org/W1527240141', 'https://openalex.org/W1591385104', 'https://openalex.org/W1761337995', 'https://openalex.org/W2001619934', 'https://openalex.org/W2012352340', 'https://openalex.org/W2021012145', 'https://openalex.org/W2029900646', 'https://openalex.org/W2041518486', 'https://openalex.org/W2062104878', 'https://openalex.org/W2088900896', 'https://openalex.org/W2093238900', 'https://openalex.org/W2098693229', 'https://openalex.org/W2102734279', 'https://openalex.org/W2104442254', 'https://openalex.org/W2120954940', 'https://openalex.org/W2121199413', 'https://openalex.org/W2121384726', 'https://openalex.org/W2121647436', 'https://openalex.org/W2122992400', 'https://openalex.org/W2124925761', 'https://openalex.org/W2130418330', 'https://openalex.org/W2131273085', 'https://openalex.org/W2148557204', 'https://openalex.org/W2155797925', 'https://openalex.org/W2164568552', 'https://openalex.org/W2165731615', 'https://openalex.org/W2167144347', 'https://openalex.org/W2170858770', 'https://openalex.org/W2180187800', 'https://openalex.org/W2468714721', 'https://openalex.org/W2511353375', 'https://openalex.org/W2994340921', 'https://openalex.org/W4233191240'], 'related_works': ['https://openalex.org/W2379352318', 'https://openalex.org/W2182646186', 'https://openalex.org/W2116423617', 'https://openalex.org/W2109788865', 'https://openalex.org/W2072065453', 'https://openalex.org/W2040171177', 'https://openalex.org/W200201533', 'https://openalex.org/W1995039490', 'https://openalex.org/W1972766437', 'https://openalex.org/W181978178'], 'abstract_inverted_index': {'In': [0, 129], 'this': [1, 58], 'paper,': [2], 'we': [3, 60, 79, 145], 'develop': [4, 80, 147], 'a': [5, 24, 62, 148], 'new': [6, 63, 173], 'framework': [7, 153], 'for': [8], 'face': [9, 186], 'recognition': [10, 164], 'based': [11, 37, 97], 'on': [12, 38, 98, 183], 'nonparametric': [13, 72], 'discriminant': [14, 73], 'analysis': [15, 74], '(NDA)': [16], 'and': [17, 88, 102, 143, 191], 'multi-classifier': [18, 151], 'integration.': [19], 'Traditional': [20], 'LDA-based': [21], 'methods': [22, 47, 96, 179], 'suffer': [23], 'fundamental': [25], 'limitation': [26], 'originating': [27], 'from': [28], 'the': [29, 39, 51, 70, 99, 103, 107, 114, 116, 122, 125, 133, 137, 156, 163, 168, 171, 176], 'parametric': [30], 'nature': [31, 135], 'of': [32, 45, 65, 106, 124, 136, 140, 170], 'scatter': [33, 66, 109], 'matrices,': [34], 'which': [35], 'are': [36], 'Gaussian': [40], 'distribution': [41, 53], 'assumption.': [42], 'The': [43], 'performance': [44], 'these': [46], 'notably': [48], 'degrades': [49], 'when': [50], 'actual': [52], 'is': [54, 118], 'Non-Gaussian.': [55], 'To': [56], 'address': [57], 'problem,': [59], 'propose': [61], 'formulation': [64], 'matrices': [67], 'to': [68, 75, 113, 131, 161], 'extend': [69], 'two-class': [71], 'multi-class': [76, 84], 'cases.': [77], 'Then,': [78], 'two': [81, 94, 138, 184], 'more': [82, 119], 'improved': [83], 'NDA-based': [85], 'algorithms': [86, 174], '(NSA': [87], 'NFA)': [89], 'with': [90], 'each': [91], 'one': [92], 'having': [93], 'complementary': [95, 134], 'principal': [100], 'space': [101, 105], 'null': [104], 'intra-class': [108], 'matrix': [110], 'respectively.': [111], 'Comparing': [112], 'NSA,': [115], 'NFA': [117, 141], 'effective': [120], 'in': [121], 'utilization': [123], 'classification': [126], 'boundary': [127], 'information.': [128], 'order': [130], 'exploit': [132], 'kinds': [139], '(PNFA': [142], 'NNFA),': [144], 'finally': [146], 'dual': [149], 'NFA-based': [150], 'fusion': [152], 'by': [154], 'employing': [155], 'over': [157, 175], 'complete': [158], 'Gabor': [159], 'representation': [160], 'boost': [162], 'performance.': [165], 'We': [166], 'show': [167], 'improvements': [169], 'developed': [172], 'traditional': [177], 'subspace': [178], 'through': [180], 'comparative': [181], 'experiments': [182], 'challenging': [185], 'databases,': [187], 'Purdue': [188], 'AR': [189], 'database': [190], 'XM2VTS': [192], 'database.': [193]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W1970748944', 'counts_by_year': [{'year': 2024, 'cited_by_count': 3}, {'year': 2023, 'cited_by_count': 3}, {'year': 2022, 'cited_by_count': 1}, {'year': 2021, 'cited_by_count': 5}, {'year': 2020, 'cited_by_count': 18}, {'year': 2019, 'cited_by_count': 9}, {'year': 2018, 'cited_by_count': 15}, {'year': 2017, 'cited_by_count': 11}, {'year': 2016, 'cited_by_count': 8}, {'year': 2015, 'cited_by_count': 19}, {'year': 2014, 'cited_by_count': 12}, {'year': 2013, 'cited_by_count': 27}, {'year': 2012, 'cited_by_count': 16}], 'updated_date': '2024-12-07T22:24:38.589413', 'created_date': '2016-06-24'}