Abstract:An operator is uniform if its restriction to any infinite-dimensional invariant subspace is unitarily equivalent to itself. We show that a uniform operator having a proper infinite-dimensional invaria...An operator is uniform if its restriction to any infinite-dimensional invariant subspace is unitarily equivalent to itself. We show that a uniform operator having a proper infinite-dimensional invariant subspace resembles an analytic Toeplitz operator in the way that the weakly closed algebra generated by it and the identity operator is isomorphic to a subalgebra of the Calkin algebra; furthermore, this algebra contains no nonscalar operator which is quasi-similar to a normal operator.Read More