Abstract:A numerical ice-shelf model is employed to observe the inception of the West Antarctic ice sheet (WAIS) from a thin (20 m thick) floating ice cover under the following conditions: (i) a lower sea-leve...A numerical ice-shelf model is employed to observe the inception of the West Antarctic ice sheet (WAIS) from a thin (20 m thick) floating ice cover under the following conditions: (i) a lower sea-level than at present, due to ice-sheet formation in the Northern Hemisphere, (ii) surface and basal temperature and accumulation rates approximately equal to those of present Antarctic ice shelves, and (iii) ice flow from East Antarctica into West Antarctica is neglected. The model determines the flow and thickness of floating ice and assumes that grounded ice is stagnant. Under these constraints, all regions except the Ross Sea, the Filchner region (east of Berkner Island), and up-stream of Thwaites Glacier ground within 4000 years. Ice readily grounds in the Ronne region (west of Berkner Island), forcing ice from Ellsworth Land to flow east toward the Filchner region. It is suggested that grounding over the Ross Sea, the Filchner region, and up-stream of Thwaites Glacier occurs only after grounded-ice flow is established. Grounded-ice flow is also a prerequisite of bed erosion and sediment deposition, which leave historical records of the actual ice-sheet formation. It is suggested that erosion and sediment deposition is minimal over the Ronne region and considerable along the path from Ellsworth Land to the Filchner region, because more ice flows toward the Filchner region than the Ronne region. It is probably difficult for ice to ground over the Ross region, so this region should have a high proportion of glacial marine sediments.Read More