Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W1575269949', 'doi': None, 'title': 'Algebraic Topology of PDES', 'display_name': 'Algebraic Topology of PDES', 'publication_year': 2012, 'publication_date': '2012-01-23', 'ids': {'openalex': 'https://openalex.org/W1575269949', 'mag': '1575269949'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'http://eprints.ma.man.ac.uk/1731/', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306532717', 'display_name': '[Thesis]. Manchester, UK: The University of Manchester; 2012.', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'dissertation', 'type_crossref': 'dissertation', 'indexed_in': [], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5025670809', 'display_name': 'Qusay S. A. Al-Zamil', 'orcid': 'https://orcid.org/0000-0003-0888-638X'}, 'institutions': [], 'countries': [], 'is_corresponding': True, 'raw_author_name': 'Qusay Soad Abdul-Aziz Al-Zamil', 'raw_affiliation_strings': [], 'affiliations': []}], 'institution_assertions': [], 'countries_distinct_count': 0, 'institutions_distinct_count': 0, 'corresponding_author_ids': ['https://openalex.org/A5025670809'], 'corresponding_institution_ids': [], 'apc_list': None, 'apc_paid': None, 'fwci': None, 'has_fulltext': False, 'cited_by_count': 3, 'citation_normalized_percentile': {'value': 0.795164, 'is_in_top_1_percent': False, 'is_in_top_10_percent': False}, 'cited_by_percentile_year': {'min': 75, 'max': 78}, 'biblio': {'volume': None, 'issue': None, 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10229', 'display_name': 'Geometric Analysis and Curvature Flows', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/2604', 'display_name': 'Applied Mathematics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10229', 'display_name': 'Geometric Analysis and Curvature Flows', 'score': 0.9995, 'subfield': {'id': 'https://openalex.org/subfields/2604', 'display_name': 'Applied Mathematics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12351', 'display_name': 'Geometry and complex manifolds', 'score': 0.9966, 'subfield': {'id': 'https://openalex.org/subfields/2608', 'display_name': 'Geometry and Topology'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T10896', 'display_name': 'Homotopy and Cohomology in Algebraic Topology', 'score': 0.9962, 'subfield': {'id': 'https://openalex.org/subfields/2610', 'display_name': 'Mathematical Physics'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [], 'concepts': [{'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.79818386}, {'id': 'https://openalex.org/C78606066', 'wikidata': 'https://www.wikidata.org/wiki/Q1198376', 'display_name': 'Cohomology', 'level': 2, 'score': 0.732669}, {'id': 'https://openalex.org/C202444582', 'wikidata': 'https://www.wikidata.org/wiki/Q837863', 'display_name': 'Pure mathematics', 'level': 1, 'score': 0.542045}, {'id': 'https://openalex.org/C68365058', 'wikidata': 'https://www.wikidata.org/wiki/Q1179446', 'display_name': 'De Rham cohomology', 'level': 4, 'score': 0.5327796}, {'id': 'https://openalex.org/C62354387', 'wikidata': 'https://www.wikidata.org/wiki/Q875399', 'display_name': 'Boundary (topology)', 'level': 2, 'score': 0.44601798}, {'id': 'https://openalex.org/C72738302', 'wikidata': 'https://www.wikidata.org/wiki/Q5384738', 'display_name': 'Equivariant cohomology', 'level': 3, 'score': 0.4099632}, {'id': 'https://openalex.org/C134306372', 'wikidata': 'https://www.wikidata.org/wiki/Q7754', 'display_name': 'Mathematical analysis', 'level': 1, 'score': 0.28381437}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'http://eprints.ma.man.ac.uk/1731/', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S4306532717', 'display_name': '[Thesis]. Manchester, UK: The University of Manchester; 2012.', 'issn_l': None, 'issn': None, 'is_oa': False, 'is_in_doaj': False, 'is_core': False, 'host_organization': None, 'host_organization_name': None, 'host_organization_lineage': [], 'host_organization_lineage_names': [], 'type': 'repository'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 20, 'referenced_works': ['https://openalex.org/W1656937597', 'https://openalex.org/W1661681931', 'https://openalex.org/W1885225626', 'https://openalex.org/W1971977117', 'https://openalex.org/W1983033166', 'https://openalex.org/W1986817086', 'https://openalex.org/W1992901553', 'https://openalex.org/W2000200161', 'https://openalex.org/W2015442042', 'https://openalex.org/W2023563401', 'https://openalex.org/W2053510218', 'https://openalex.org/W2087763194', 'https://openalex.org/W2111891221', 'https://openalex.org/W2152822709', 'https://openalex.org/W2164179960', 'https://openalex.org/W2165132476', 'https://openalex.org/W2326302425', 'https://openalex.org/W3040586665', 'https://openalex.org/W3208289146', 'https://openalex.org/W414210720'], 'related_works': ['https://openalex.org/W96228054', 'https://openalex.org/W3199646758', 'https://openalex.org/W2975139729', 'https://openalex.org/W2963730432', 'https://openalex.org/W2962719291', 'https://openalex.org/W2884366974', 'https://openalex.org/W2724489698', 'https://openalex.org/W2288665361', 'https://openalex.org/W2240376614', 'https://openalex.org/W2147315104', 'https://openalex.org/W2089211751', 'https://openalex.org/W2062766893', 'https://openalex.org/W2058330045', 'https://openalex.org/W2037494186', 'https://openalex.org/W2035241867', 'https://openalex.org/W201522752', 'https://openalex.org/W1998859397', 'https://openalex.org/W1990591370', 'https://openalex.org/W1594107859', 'https://openalex.org/W100084051'], 'abstract_inverted_index': {'We': [0, 174], 'consider': [1], 'a': [2, 18, 213, 307, 311, 378], 'compact,': [3], 'oriented,': [4], 'smooth': [5], 'Riemannian': [6], 'manifold': [7, 308], 'M': [8, 220, 252, 427], '(with': [9], 'or': [10], 'without': [11], 'boundary)': [12, 120], 'and': [13, 32, 57, 81, 121, 127, 161, 183, 186, 194, 232, 260, 343, 393, 446, 476, 487], 'we': [14, 115, 142, 228, 238, 297, 326, 339, 346, 402, 437, 457, 477], 'suppose': [15], 'G': [16], 'is': [17, 105, 198, 302, 464, 481], 'torus': [19], 'acting': [20], 'by': [21, 279, 289, 310], 'isometries': [22], 'on': [23, 37, 55, 211, 219, 251, 318, 331, 334, 433, 444, 448, 452], 'M.': [24, 399], 'Given': [25], 'X': [26], 'in': [27, 71, 155, 257, 321], 'the': [28, 64, 72, 82, 87, 94, 119, 125, 129, 144, 148, 158, 163, 177, 180, 184, 230, 240, 245, 265, 272, 282, 291, 303, 314, 319, 322, 335, 348, 354, 363, 369, 382, 387, 391, 405, 422, 430, 434, 453, 459, 465, 471, 484], 'Lie': [29, 383], 'algebra': [30], 'of\nG': [31], 'corresponding': [33, 215, 224], 'vector': [34], 'field': [35, 206, 218], 'X_M': [36], 'M,': [38], 'one': [39], 'defines': [40], 'Witten’s': [41, 108], 'inhomogeneous': [42], 'coboundary': [43], 'operator': [44, 268, 329, 431], '$d_{X_M}': [45], '=': [46, 77], 'd+i_{X_M}': [47], ':': [48], '\\Omega_G^\\pm': [49], '\\to': [50], '\\Omega_G^\\pm$': [51], '(even/odd': [52], 'invariant': [53, 153, 332], 'forms': [54, 154, 333], 'M)': [56, 358], 'its': [58], 'adjoint': [59], '$\\delta_{X_M}$.\n\nFirst,Witten': [60], '[35]': [61], 'showed': [62, 263], 'that': [63, 167, 203, 264, 281, 376, 416, 479], 'resulting': [65], 'cohomology': [66, 83, 91, 285, 396, 462, 466], 'classes': [67, 130], 'have': [68, 131], 'X_M-harmonic': [69, 133, 217, 249, 461], 'representatives\n(forms': [70], 'null': [73], 'space': [74], 'of': [75, 93, 97, 99, 124, 147, 157, 192, 235, 248, 274, 276, 294, 306, 313, 353, 381, 390, 398, 409, 426, 467, 470], '$\\Delta_{X_M}': [76], '(d_{X_M}': [78], '+': [79], '\\delta_{X_M})^2$),': [80], 'groups\nare': [84], 'isomorphic': [85, 482], 'to': [86, 106, 110, 201, 221, 299, 483], 'ordinary': [88], 'de': [89, 283], 'Rham': [90, 284], 'groups': [92, 182, 286, 397, 411], 'set': [95], 'N(X_M)': [96, 445], 'zeros': [98], 'X_M.': [100], 'The': [101], 'first': [102, 323, 454], 'principal': [103], 'purpose': [104], 'extend': [107], 'results': [109, 320], 'manifolds': [111], 'with': [112, 135, 207, 223, 253, 362], 'boundary.\nIn': [113], 'particular,': [114], 'define': [116, 229, 239, 327], 'relative': [117, 185, 392, 488], '(to': [118], 'absolute': [122, 187, 394, 486], 'versions': [123], 'X_M-cohomology': [126, 181, 351, 410, 489], 'show': [128, 202], 'representative': [132], 'fields': [134, 250], 'appropriate': [136, 208, 254], 'boundary': [137, 169, 209, 225, 233, 255, 336, 371, 442], 'conditions.': [138, 226], 'To': [139], 'do': [140], 'this': [141, 295, 345], 'present': [143, 458], 'relevant': [145], 'version': [146], 'Hodge-Morrey-Friedrichs': [149], 'decomposition': [150], 'theorem': [151], 'for': [152, 377], 'terms': [156], 'operators': [159], 'd_{X_M}': [160], '\\deta_{X_M};': [162], 'proof': [164], 'involves': [165], 'showing': [166], 'certain': [168, 468], 'value': [170], 'problems': [171], 'are': [172, 287], 'elliptic.': [173], 'also': [175], 'elucidate': [176], 'connection': [178, 197, 439], 'between': [179, 244, 440], 'equivariant': [188, 304, 395, 423], 'cohomology,': [189], 'following': [190], 'work': [191], 'Atiyah': [193], 'Bott.': [195], 'This': [196, 374, 414], 'then': [199, 237], 'exploited': [200], 'every': [204], 'harmonic': [205], 'conditions': [210], 'N(X_M)\nhas': [212], 'unique': [214], 'an': [216, 328, 360], 'it,': [222], 'Finally,': [227, 436], 'interior': [231, 246], 'portion': [234], 'X_M-cohomology\nand': [236], 'X_M-Poincar´e': [241], 'duality': [242], 'angles': [243], 'subspaces': [247], 'conditions.\n\nSecond,': [256], '2008,': [258], 'Belishev': [259], 'Sharafutdinov': [261], '[9]': [262], 'Dirichlet-to-Neumann': [266], '(DN)': [267], '\\Lambda': [269, 432], 'inscribes': [270], 'into': [271], 'list': [273], 'objects': [275], 'algebraic': [277, 424], 'topology': [278, 305, 425], 'proving': [280], 'determined': [288, 309], '\\Lambda.\nIn': [290], 'second': [292], 'part': [293, 324, 389, 455], 'thesis,': [296], 'investigate': [298], 'what': [300], 'extent': [301], 'variant': [312], 'DN': [315], 'map?.': [316], 'Based': [317], 'above,': [325, 456], '\\Lambda_{X_M}': [330, 385, 417], '¶M': [337], 'which': [338, 463], 'call\nthe': [340], 'X_M-DN': [341], 'map': [342], 'using': [344], 'recover': [347], 'long': [349, 364], 'exact': [350, 365], 'sequence': [352, 366], 'topological': [355], 'pair': [356], '(M;\\partial': [357], 'from': [359, 368, 412], 'isomorphism': [361], 'formed': [367], 'generalized': [370], 'data.': [372], 'Consequently,': [373], 'shows': [375, 415], 'Zariski-open': [379], 'subset': [380], 'algebra,': [384], 'determines': [386], 'free': [388], 'In': [400], 'addition,': [401], 'partially': [403], 'determine': [404], 'mixed': [406], 'cup': [407], 'product': [408], '\\Lambda_{X_M}.': [413], 'encodes': [418], 'more': [419], 'information': [420], 'about': [421], 'than': [428], 'does': [429], 'boundary.': [435], 'elucidate\nthe': [438], 'Belishev-Sharafutdinov’s': [441], 'data': [443], 'ours': [447], '\\partial': [449], 'M.\n\nThird,': [450], 'based': [451], '(even/odd)': [460], 'subcomplex': [469], 'complex': [472], '(\\Omega_G^*,': [473], 'd_{X_M})': [474], 'prove': [478], 'it': [480], 'total': [485], 'groups.': [490]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W1575269949', 'counts_by_year': [{'year': 2012, 'cited_by_count': 1}], 'updated_date': '2024-12-07T17:06:05.850813', 'created_date': '2016-06-24'}