Get quick answers to your questions about the article from our AI researcher chatbot
{'id': 'https://openalex.org/W1564223560', 'doi': 'https://doi.org/10.1029/2010wr010352', 'title': 'Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm', 'display_name': 'Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm', 'publication_year': 2011, 'publication_date': '2011-09-14', 'ids': {'openalex': 'https://openalex.org/W1564223560', 'doi': 'https://doi.org/10.1029/2010wr010352', 'mag': '1564223560'}, 'language': 'en', 'primary_location': {'is_oa': False, 'landing_page_url': 'https://doi.org/10.1029/2010wr010352', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S204847658', 'display_name': 'Water Resources Research', 'issn_l': '0043-1397', 'issn': ['0043-1397', '1944-7973'], 'is_oa': True, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}, 'type': 'article', 'type_crossref': 'journal-article', 'indexed_in': ['crossref'], 'open_access': {'is_oa': False, 'oa_status': 'closed', 'oa_url': None, 'any_repository_has_fulltext': False}, 'authorships': [{'author_position': 'first', 'author': {'id': 'https://openalex.org/A5067931953', 'display_name': 'Tiangang Cui', 'orcid': 'https://orcid.org/0000-0002-4840-8545'}, 'institutions': [{'id': 'https://openalex.org/I154130895', 'display_name': 'University of Auckland', 'ror': 'https://ror.org/03b94tp07', 'country_code': 'NZ', 'type': 'education', 'lineage': ['https://openalex.org/I154130895']}], 'countries': ['NZ'], 'is_corresponding': False, 'raw_author_name': 'T. Cui', 'raw_affiliation_strings': ['Department of Engineering Science, University of Auckland, Auckland, New Zealand'], 'affiliations': [{'raw_affiliation_string': 'Department of Engineering Science, University of Auckland, Auckland, New Zealand', 'institution_ids': ['https://openalex.org/I154130895']}]}, {'author_position': 'middle', 'author': {'id': 'https://openalex.org/A5041490305', 'display_name': 'Colin Fox', 'orcid': 'https://orcid.org/0000-0002-9278-1777'}, 'institutions': [{'id': 'https://openalex.org/I80281795', 'display_name': 'University of Otago', 'ror': 'https://ror.org/01jmxt844', 'country_code': 'NZ', 'type': 'education', 'lineage': ['https://openalex.org/I80281795']}], 'countries': ['NZ'], 'is_corresponding': False, 'raw_author_name': 'C. Fox', 'raw_affiliation_strings': ['Department of Physics, University of Otago , Dunedin, New Zealand'], 'affiliations': [{'raw_affiliation_string': 'Department of Physics, University of Otago , Dunedin, New Zealand', 'institution_ids': ['https://openalex.org/I80281795']}]}, {'author_position': 'last', 'author': {'id': 'https://openalex.org/A5013092926', 'display_name': 'Michael J. O’Sullivan', 'orcid': 'https://orcid.org/0000-0002-7886-5843'}, 'institutions': [{'id': 'https://openalex.org/I154130895', 'display_name': 'University of Auckland', 'ror': 'https://ror.org/03b94tp07', 'country_code': 'NZ', 'type': 'education', 'lineage': ['https://openalex.org/I154130895']}], 'countries': ['NZ'], 'is_corresponding': False, 'raw_author_name': "M. J. O'Sullivan", 'raw_affiliation_strings': ['Department of Engineering Science, University of Auckland, Auckland, New Zealand'], 'affiliations': [{'raw_affiliation_string': 'Department of Engineering Science, University of Auckland, Auckland, New Zealand', 'institution_ids': ['https://openalex.org/I154130895']}]}], 'institution_assertions': [], 'countries_distinct_count': 1, 'institutions_distinct_count': 2, 'corresponding_author_ids': [], 'corresponding_institution_ids': [], 'apc_list': {'value': 3000, 'currency': 'USD', 'value_usd': 3000, 'provenance': 'doaj'}, 'apc_paid': None, 'fwci': 6.494, 'has_fulltext': False, 'cited_by_count': 141, 'citation_normalized_percentile': {'value': 0.920497, 'is_in_top_1_percent': False, 'is_in_top_10_percent': True}, 'cited_by_percentile_year': {'min': 98, 'max': 99}, 'biblio': {'volume': '47', 'issue': '10', 'first_page': None, 'last_page': None}, 'is_retracted': False, 'is_paratext': False, 'primary_topic': {'id': 'https://openalex.org/T10894', 'display_name': 'Groundwater flow and contamination studies', 'score': 0.9957, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, 'topics': [{'id': 'https://openalex.org/T10894', 'display_name': 'Groundwater flow and contamination studies', 'score': 0.9957, 'subfield': {'id': 'https://openalex.org/subfields/2305', 'display_name': 'Environmental Engineering'}, 'field': {'id': 'https://openalex.org/fields/23', 'display_name': 'Environmental Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12056', 'display_name': 'Markov Chains and Monte Carlo Methods', 'score': 0.9951, 'subfield': {'id': 'https://openalex.org/subfields/2613', 'display_name': 'Statistics and Probability'}, 'field': {'id': 'https://openalex.org/fields/26', 'display_name': 'Mathematics'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}, {'id': 'https://openalex.org/T12814', 'display_name': 'Gaussian Processes and Bayesian Inference', 'score': 0.9949, 'subfield': {'id': 'https://openalex.org/subfields/1702', 'display_name': 'Artificial Intelligence'}, 'field': {'id': 'https://openalex.org/fields/17', 'display_name': 'Computer Science'}, 'domain': {'id': 'https://openalex.org/domains/3', 'display_name': 'Physical Sciences'}}], 'keywords': [{'id': 'https://openalex.org/keywords/metropolis–hastings-algorithm', 'display_name': 'Metropolis–Hastings algorithm', 'score': 0.86619306}], 'concepts': [{'id': 'https://openalex.org/C204693719', 'wikidata': 'https://www.wikidata.org/wiki/Q910810', 'display_name': 'Metropolis–Hastings algorithm', 'level': 4, 'score': 0.86619306}, {'id': 'https://openalex.org/C111350023', 'wikidata': 'https://www.wikidata.org/wiki/Q1191869', 'display_name': 'Markov chain Monte Carlo', 'level': 3, 'score': 0.8569766}, {'id': 'https://openalex.org/C11413529', 'wikidata': 'https://www.wikidata.org/wiki/Q8366', 'display_name': 'Algorithm', 'level': 1, 'score': 0.59683156}, {'id': 'https://openalex.org/C140779682', 'wikidata': 'https://www.wikidata.org/wiki/Q210868', 'display_name': 'Sampling (signal processing)', 'level': 3, 'score': 0.5738167}, {'id': 'https://openalex.org/C41008148', 'wikidata': 'https://www.wikidata.org/wiki/Q21198', 'display_name': 'Computer science', 'level': 0, 'score': 0.5684095}, {'id': 'https://openalex.org/C160234255', 'wikidata': 'https://www.wikidata.org/wiki/Q812535', 'display_name': 'Bayesian inference', 'level': 3, 'score': 0.5564076}, {'id': 'https://openalex.org/C57830394', 'wikidata': 'https://www.wikidata.org/wiki/Q278079', 'display_name': 'Posterior probability', 'level': 3, 'score': 0.5457775}, {'id': 'https://openalex.org/C107673813', 'wikidata': 'https://www.wikidata.org/wiki/Q812534', 'display_name': 'Bayesian probability', 'level': 2, 'score': 0.53141004}, {'id': 'https://openalex.org/C111766609', 'wikidata': 'https://www.wikidata.org/wiki/Q636340', 'display_name': 'Geothermal gradient', 'level': 2, 'score': 0.4784639}, {'id': 'https://openalex.org/C2778755073', 'wikidata': 'https://www.wikidata.org/wiki/Q10858537', 'display_name': 'Scale (ratio)', 'level': 2, 'score': 0.4489809}, {'id': 'https://openalex.org/C2776214188', 'wikidata': 'https://www.wikidata.org/wiki/Q408386', 'display_name': 'Inference', 'level': 2, 'score': 0.43362895}, {'id': 'https://openalex.org/C126255220', 'wikidata': 'https://www.wikidata.org/wiki/Q141495', 'display_name': 'Mathematical optimization', 'level': 1, 'score': 0.401062}, {'id': 'https://openalex.org/C33923547', 'wikidata': 'https://www.wikidata.org/wiki/Q395', 'display_name': 'Mathematics', 'level': 0, 'score': 0.28199574}, {'id': 'https://openalex.org/C154945302', 'wikidata': 'https://www.wikidata.org/wiki/Q11660', 'display_name': 'Artificial intelligence', 'level': 1, 'score': 0.13892579}, {'id': 'https://openalex.org/C127313418', 'wikidata': 'https://www.wikidata.org/wiki/Q1069', 'display_name': 'Geology', 'level': 0, 'score': 0.07967821}, {'id': 'https://openalex.org/C121332964', 'wikidata': 'https://www.wikidata.org/wiki/Q413', 'display_name': 'Physics', 'level': 0, 'score': 0.0}, {'id': 'https://openalex.org/C106131492', 'wikidata': 'https://www.wikidata.org/wiki/Q3072260', 'display_name': 'Filter (signal processing)', 'level': 2, 'score': 0.0}, {'id': 'https://openalex.org/C62520636', 'wikidata': 'https://www.wikidata.org/wiki/Q944', 'display_name': 'Quantum mechanics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C8058405', 'wikidata': 'https://www.wikidata.org/wiki/Q46255', 'display_name': 'Geophysics', 'level': 1, 'score': 0.0}, {'id': 'https://openalex.org/C31972630', 'wikidata': 'https://www.wikidata.org/wiki/Q844240', 'display_name': 'Computer vision', 'level': 1, 'score': 0.0}], 'mesh': [], 'locations_count': 1, 'locations': [{'is_oa': False, 'landing_page_url': 'https://doi.org/10.1029/2010wr010352', 'pdf_url': None, 'source': {'id': 'https://openalex.org/S204847658', 'display_name': 'Water Resources Research', 'issn_l': '0043-1397', 'issn': ['0043-1397', '1944-7973'], 'is_oa': True, 'is_in_doaj': False, 'is_core': True, 'host_organization': 'https://openalex.org/P4310320595', 'host_organization_name': 'Wiley', 'host_organization_lineage': ['https://openalex.org/P4310320595'], 'host_organization_lineage_names': ['Wiley'], 'type': 'journal'}, 'license': None, 'license_id': None, 'version': None, 'is_accepted': False, 'is_published': False}], 'best_oa_location': None, 'sustainable_development_goals': [{'score': 0.41, 'display_name': 'Sustainable cities and communities', 'id': 'https://metadata.un.org/sdg/11'}], 'grants': [], 'datasets': [], 'versions': [], 'referenced_works_count': 116, 'referenced_works': ['https://openalex.org/W143236119', 'https://openalex.org/W1522490570', 'https://openalex.org/W1531406273', 'https://openalex.org/W1531455566', 'https://openalex.org/W1544278534', 'https://openalex.org/W1554544485', 'https://openalex.org/W1574940769', 'https://openalex.org/W1588946961', 'https://openalex.org/W1609549108', 'https://openalex.org/W1610397282', 'https://openalex.org/W1615340469', 'https://openalex.org/W1628017834', 'https://openalex.org/W1754423787', 'https://openalex.org/W1861725096', 'https://openalex.org/W1909649765', 'https://openalex.org/W192616667', 'https://openalex.org/W1932499509', 'https://openalex.org/W1966017656', 'https://openalex.org/W1967008706', 'https://openalex.org/W1967091725', 'https://openalex.org/W1973985853', 'https://openalex.org/W1974210778', 'https://openalex.org/W1975633784', 'https://openalex.org/W1979641008', 'https://openalex.org/W1983139887', 'https://openalex.org/W1984138429', 'https://openalex.org/W1988614324', 'https://openalex.org/W1990779154', 'https://openalex.org/W1991921673', 'https://openalex.org/W1995780830', 'https://openalex.org/W1995938050', 'https://openalex.org/W1998060273', 'https://openalex.org/W2001857141', 'https://openalex.org/W2005739986', 'https://openalex.org/W2006582998', 'https://openalex.org/W2008703230', 'https://openalex.org/W2009680644', 'https://openalex.org/W2009814556', 'https://openalex.org/W2011161612', 'https://openalex.org/W2012603248', 'https://openalex.org/W2012798851', 'https://openalex.org/W2014924022', 'https://openalex.org/W2015466518', 'https://openalex.org/W2029769078', 'https://openalex.org/W2030813153', 'https://openalex.org/W2030911724', 'https://openalex.org/W2036056913', 'https://openalex.org/W2036340359', 'https://openalex.org/W2038641757', 'https://openalex.org/W2039097700', 'https://openalex.org/W2040117584', 'https://openalex.org/W2042770989', 'https://openalex.org/W2047978125', 'https://openalex.org/W2050427484', 'https://openalex.org/W2050892063', 'https://openalex.org/W2051233814', 'https://openalex.org/W2056760934', 'https://openalex.org/W2057832688', 'https://openalex.org/W2060880556', 'https://openalex.org/W2064871928', 'https://openalex.org/W2070612147', 'https://openalex.org/W2071544114', 'https://openalex.org/W2073412813', 'https://openalex.org/W2074836377', 'https://openalex.org/W2075385817', 'https://openalex.org/W2075473759', 'https://openalex.org/W207731473', 'https://openalex.org/W2078714116', 'https://openalex.org/W2079855895', 'https://openalex.org/W2089657469', 'https://openalex.org/W2095921782', 'https://openalex.org/W2100430894', 'https://openalex.org/W2101517901', 'https://openalex.org/W2106706098', 'https://openalex.org/W2108207895', 'https://openalex.org/W2114220616', 'https://openalex.org/W2114298142', 'https://openalex.org/W2114350394', 'https://openalex.org/W2117319840', 'https://openalex.org/W2119179880', 'https://openalex.org/W2123677000', 'https://openalex.org/W2124738823', 'https://openalex.org/W2132071585', 'https://openalex.org/W2133513614', 'https://openalex.org/W2133837084', 'https://openalex.org/W2138309709', 'https://openalex.org/W2143022286', 'https://openalex.org/W2144603899', 'https://openalex.org/W2144661611', 'https://openalex.org/W2146495904', 'https://openalex.org/W2147419810', 'https://openalex.org/W2148534890', 'https://openalex.org/W2149458675', 'https://openalex.org/W2161903948', 'https://openalex.org/W2162604832', 'https://openalex.org/W2163332951', 'https://openalex.org/W2163824141', 'https://openalex.org/W2165363188', 'https://openalex.org/W2170396766', 'https://openalex.org/W2177422054', 'https://openalex.org/W2271510325', 'https://openalex.org/W2496675188', 'https://openalex.org/W2573715514', 'https://openalex.org/W260872158', 'https://openalex.org/W2796432875', 'https://openalex.org/W3098198761', 'https://openalex.org/W3122858766', 'https://openalex.org/W3140968660', 'https://openalex.org/W314780631', 'https://openalex.org/W4246125129', 'https://openalex.org/W4249186015', 'https://openalex.org/W4255975151', 'https://openalex.org/W4285719527', 'https://openalex.org/W4388319850', 'https://openalex.org/W4388320111', 'https://openalex.org/W55439640'], 'related_works': ['https://openalex.org/W4390532044', 'https://openalex.org/W4362705882', 'https://openalex.org/W4250051631', 'https://openalex.org/W3087071515', 'https://openalex.org/W2956835927', 'https://openalex.org/W2392396032', 'https://openalex.org/W217235565', 'https://openalex.org/W2073412813', 'https://openalex.org/W2071668645', 'https://openalex.org/W160986626'], 'abstract_inverted_index': {'The': [0], 'aim': [1], 'of': [2, 10, 15, 29, 62, 64, 112, 119, 125, 137, 166], 'this': [3], 'research': [4], 'is': [5, 104], 'to': [6, 72, 76, 83, 106], 'estimate': [7], 'the': [8, 27, 39, 45, 67, 78, 85, 94, 113, 117, 138, 149, 163, 167], 'parameters': [9, 34], 'a': [11, 16, 97, 109, 120, 159], 'large‐scale': [12, 196], 'numerical': [13], 'model': [14, 111, 153], 'geothermal': [17, 151], 'reservoir': [18, 152], 'using': [19], 'Markov': [20], 'chain': [21], 'Monte': [22], 'Carlo': [23], '(MCMC)': [24], 'sampling,': [25, 169], 'within': [26], 'framework': [28], 'Bayesian': [30], 'inference.': [31], 'All': [32], 'feasible': [33], 'that': [35, 133, 146], 'are': [36, 42, 55, 179], 'consistent': [37], 'with': [38], 'measured': [40], 'data': [41], 'summarized': [43], 'by': [44, 58, 116], 'posterior': [46, 68, 90], 'distribution,': [47], 'and': [48, 52, 170, 176], 'hence': [49], 'parameter': [50, 174], 'estimation': [51, 175], 'uncertainty': [53, 177], 'quantification': [54, 178], 'both': [56], 'given': [57], 'calculating': [59], 'expected': [60], 'values': [61], 'statistics': [63], 'interest': [65], 'over': [66], 'distribution.': [69, 91], 'It': [70], 'appears': [71], 'be': [73], 'computationally': [74, 88], 'infeasible': [75], 'use': [77, 118, 124], 'standard': [79], 'Metropolis‐Hastings': [80, 139], 'algorithm': [81, 102, 140, 182], '(MH)': [82], 'sample': [84], 'high': [86], 'dimensional': [87], 'expensive': [89], 'To': [92], 'improve': [93], 'sampling': [95], 'efficiency,': [96], 'new': [98], 'adaptive': [99, 130], 'delayed‐acceptance': [100], 'MH': [101], '(ADAMH)': [103], 'implemented': [105], 'adaptively': [107], 'build': [108], 'stochastic': [110], 'error': [114], 'introduced': [115], 'reduced‐order': [121], 'model.': [122], 'This': [123, 181], 'adaptivity': [126], 'differs': [127], 'from': [128], 'existing': [129], 'MCMC': [131, 168], 'algorithms': [132], 'tune': [134], 'proposal': [135], 'distributions': [136], '(MH),': [141], 'though': [142], 'ADAMH': [143, 157], 'also': [144], 'implements': [145], 'technique.': [147], 'For': [148], '3‐D': [150], 'we': [154], 'present': [155], 'here,': [156], 'shows': [158], 'great': [160], 'improvement': [161, 186], 'in': [162, 187, 194], 'computational': [164, 188], 'efficiency': [165, 189], 'promising': [171], 'results': [172], 'for': [173], 'obtained.': [180], 'could': [183], 'offer': [184], 'significant': [185], 'when': [190], 'implementing': [191], 'sample‐based': [192], 'inference': [193], 'other': [195], 'inverse': [197], 'problems.': [198]}, 'cited_by_api_url': 'https://api.openalex.org/works?filter=cites:W1564223560', 'counts_by_year': [{'year': 2024, 'cited_by_count': 5}, {'year': 2023, 'cited_by_count': 2}, {'year': 2022, 'cited_by_count': 9}, {'year': 2021, 'cited_by_count': 15}, {'year': 2020, 'cited_by_count': 21}, {'year': 2019, 'cited_by_count': 14}, {'year': 2018, 'cited_by_count': 14}, {'year': 2017, 'cited_by_count': 10}, {'year': 2016, 'cited_by_count': 12}, {'year': 2015, 'cited_by_count': 7}, {'year': 2014, 'cited_by_count': 17}, {'year': 2013, 'cited_by_count': 8}, {'year': 2012, 'cited_by_count': 5}], 'updated_date': '2024-12-19T10:36:52.810187', 'created_date': '2016-06-24'}