Title: Implicit method for the time marching analysis of flutter
Abstract:Abstract This paper evaluates a time marching simulation method for flutter which is based on a solution of the Euler equations and a linear modal structural model. Jameson’s pseudo time method is use...Abstract This paper evaluates a time marching simulation method for flutter which is based on a solution of the Euler equations and a linear modal structural model. Jameson’s pseudo time method is used for the time stepping, allowing sequencing errors to be avoided without incurring additional computational cost. Transfinite interpolation of displacements is used for grid regeneration and a constant volume transformation for inter-grid interpolation. The flow pseudo steady state is calculated using an unfactored implicit method which features a Krylov subspace solution of an approximately linearised system. The spatial discretisation is made using Osher’s approximate Riemann solver with MUSCL interpolation. The method is evaluated against available results for the AGARD 445.6 wing. This wing, which is made of laminated mahogany, was tested at NASA Langley in the 1960s and has been the standard test case for simulation methods ever since. The structural model in the current work was built in NASTRAN using homogeneous plate elements. The comparisons show good agreement for the prediction of flutter boundaries. The solution method allows larger time steps to be taken than other methods.Read More
Publication Year: 2001
Publication Date: 2001-04-01
Language: en
Type: article
Indexed In: ['crossref']
Access and Citation
Cited By Count: 39
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot