Title: RIP-Based Near-Oracle Performance Guarantees for Subspace-Pursuit, CoSaMP, and Iterative Hard-Thresholding
Abstract:This paper presents an average case denoising performance analysis for the Subspace Pursuit (SP), the CoSaMP and the IHT algorithms. This analysis considers the recovery of a noisy signal, with the as...This paper presents an average case denoising performance analysis for the Subspace Pursuit (SP), the CoSaMP and the IHT algorithms. This analysis considers the recovery of a noisy signal, with the assumptions that (i) it is corrupted by an additive random white Gaussian noise; and (ii) it has a K-sparse representation with respect to a known dictionary D. The proposed analysis is based on the Restricted-Isometry-Property (RIP), establishing a near-oracle performance guarantee for each of these algorithms. The results for the three algorithms differ in the bounds' constants and in the cardinality requirement (the upper bound on $K$ for which the claim is true). Similar RIP-based analysis was carried out previously for the Dantzig Selector (DS) and the Basis Pursuit (BP). Past work also considered a mutual-coherence-based analysis of the denoising performance of the DS, BP, the Orthogonal Matching Pursuit (OMP) and the thresholding algorithms. This work differs from the above as it addresses a different set of algorithms. Also, despite the fact that SP, CoSaMP, and IHT are greedy-like methods, the performance guarantees developed in this work resemble those obtained for the relaxation-based methods (DS and BP), suggesting that the performance is independent of the sparse representation entries contrast and magnitude.Read More