Title: A commutative P^1-spectrum representing motivic cohomology over Dedekind domains
Abstract:We construct a motivic Eilenberg-MacLane spectrum with a highly structured multiplication over smooth schemes over Dedekind domains which represents Levine's motivic cohomology. The latter is defined ...We construct a motivic Eilenberg-MacLane spectrum with a highly structured multiplication over smooth schemes over Dedekind domains which represents Levine's motivic cohomology. The latter is defined via Bloch's cycle complexes. Our method is by gluing p-completed and rational parts along an arithmetic square. Hereby the finite coefficient spectra are obtained by truncated \'etale sheaves (relying on the now proven Bloch-Kato conjecture) and a variant of Geisser's version of syntomic cohomology, and the rational spectra are the ones which represent Beilinson motivic cohomology. As an application the arithmetic motivic cohomology groups can be realized as Ext-groups in a triangulated category of Tate sheaves with integral coefficients. These can be modelled as representations of derived fundamental groups. Our spectrum is compatible with base change giving rise to a formalism of six functors for triangulated categories of motivic sheaves over general base schemes including the localization triangle. Further applications include a generalization of the Hopkins-Morel isomorphism and a structure result for the dual motivic Steenrod algebra in the case where the coefficient characteristic is invertible on the base scheme.Read More
Publication Year: 2012
Publication Date: 2012-07-17
Language: en
Type: preprint
Access and Citation
Cited By Count: 40
AI Researcher Chatbot
Get quick answers to your questions about the article from our AI researcher chatbot